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ABSTRACT

This research explores the application of language mod-
els and machine-learning techniques to generate musical
voices with personality. By utilizing autoregressive trans-
formers, specifically the Bark model, tokens are generated
from input text to produce a unique invented and undefin-
able language.
Composition is being made between text and sound us-
ing various control techniques, including tokens repetition
and windowing, Lempel-Ziv-Welch compression, and to-
ken clustering from acoustic feature extraction, to regulate
the output voice’s granularity, intelligibility, and meaning.
A recursive generation system is also introduced, allowing
for the creation of a large series of interrelated voices.
The research is used in various artistic applications, in-
cluding music remixing and theater production. It explores
other forms of expressive voices and storytelling seamlessly
lying right in the middle between text and sound.

1. INTRODUCTION

Many have previously played with Text-To-Speech (TTS)
synthesis engines by typing nonsensical text as input. We
even built loops and random texts, which we then used to
create thousands of audio files for post-processing in pre-
vious pieces using synthetic voice. The results were very
satisfying, but they tended to become cliché unless we in-
corporated additional musical techniques afterward. We
were never seamlessly working halfway between text and
sound; it was naturally always a back-and-forth process
between those two layers.

2. VOICE GENERATION WITH PERSONALITY

2.1 Artificial ”musical” voices

Georges Aperghis’s work obviously influenced our research.
His music-theatre pieces defy categorization. But it be-
longs to a kind of vocal composition relying heavily on
a virtuosic manipulation of ”phonemes”, marked by rapid
tempos, repetitive patterns, and accumulative techniques,
all of which generate intense rhythmic energy 1 [1]. The

1 ”Phonemes” does not refer to proper linguistics but rather portions of
words or voice techniques.
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creation of an “imaginary language” gives rise to a sound-
scape that is both ambiguous and playfully humorous, evok-
ing the illusion of communication while remaining music.
This blurs the line between linguistic expression and mu-
sical composition.
This blurred line can usually be explored and used with
symbolic text and signal processing separately. However,
there have been exceptions merging those steps such as
Sprechgesang or Sprechstimme’s expressionist musical vo-
cal techniques. They lie in the middle but also follow the
chain of being first defined symbolically then interpreted
by vocalists.
Hip-hop and R&B have continually pushed the boundaries
of vocal expression through various techniques that blur
the line between literalism and abstraction. Notable vocal
techniques are added to audio techniques such as Auto-
tune [2]. Since the late 1990s, Auto-tune has evolved from
being merely a vocal correction tool into a cultural phe-
nomenon. This effect is based on re-synthesis and can be
extended as an artificial voice controlled by voice. This
instrument is able to transform both voice itself and the
meaning it conveys.

2.2 Search for a synthesis with personality

Voice synthesis controlled by a Large Model Language
(LLM) allows for generating a wide range of text and vo-
cal techniques that are different when asking a performer.
Depending on the models and used techniques, synthesis
can bring a wide range of variability, subversion and in-
spirations. Such synthesis allows emotional detachment,
gender, and neutrality that we can hybridize at will.
Moreover, it allows composing at the exact place of the
blurred line between literalism and abstraction; and be-
tween symbolic text and signal.
However, most synthesis engines’ quality has become too
good to be mere instruments. Their lack of glitches and
inconsistency does not enhance the creativity of the tool.
Moreover, they significantly lose character, and the voice
is far less creative than that of a real actor, for instance.
Finally, it is challenging to compose using voice synthesis
without an architecture that we can fully control, avoiding
babbling effects closely tied to early-2020s aesthetics.

3. WORKFLOW

We propose a workflow offering control at all levels be-
tween the initial text generation and the final voice syn-
thesis. The first process of the chain consists on com-
posing text using LLM in Ollama [3]. We then employ
a voice synthesis engine named Bark to generate audio
tokens, which we convert to directly utilize the FairSeq
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Figure 1. Proposed workflow with variables that can be utilized for musi-
cal purposes. This paper will focus specifically on the Bark part, particu-
larly the red section, which has been demonstrated to be the most effective
and expressive.

library for emotion conversion 2 . The final synthesis is
done using Vocos neural vocoder and sent to Max for live
prosodic post-processing and Ableton Live for mastering
and voice doubling 3 .
We will here focus on one part of the voice synthesis al-
though all components are interdependent and sometimes
necessarily influenced by one another. We then only con-
centrate on the red section shown in fig. 1 that processes
”semantic token” that lie exactly where we want: in the
middle between text and audio generation.

4. HACKED BARK

4.1 Adapting Bark to composition

We decided to start with an adapted version of Bark, a text-
prompted Generative Pre-trained Transformer-style (GPT-
style) model that takes creative liberties in its generation.
Suno’s program, from 2023, does not offer the best sound
quality but this has no impact on the overall quality of our
system, as we employ numerous other processes and syn-
theses afterward 4 . Moreover, the Max component at the
end of the workflow significantly alters voice qualities for
aesthetic purposes 5 .
Bark is made of a series of autoregressive transformers us-
ing a semantic model, a coarse acoustics model, and a fine
acoustics model:

• The fine acoustics model takes as input predicted to-
kens generated from the coarse model and iteratively
predicts tokens ready for the audio synthesis. The
use of EnCodec neural codec permits coding and
hooking Bark to other libraries 6 [4].

• The coarse acoustic model is a GPT-2-style causal
transformer converting semantic tokens into coarse
acoustic ones.

2 Fairseq lib: https://github.com/facebookresearch/fairseq
3 Vocos lib: https://github.com/gemelo-ai/vocos
4 Unhacked Bark: https://github.com/suno-ai/bark
5 FrameLib: https://github.com/AlexHarker/FrameLib
6 EnCodec codec: https://github.com/facebookresearch/encodec

• The semantic model is also a GPT-2-like causal auto-
regressive transformer model with a language mod-
eling head on top. It takes in tokenized text (from a
BERT tokenizer) as input and then predicts the se-
mantic tokens that encode the audio to be generated.
This part is the most important for speaker’s iden-
tity. We can here add prompts that will most define
speakers’ personality traits with their intonation and
prosodic patterns.

Bark’s architecture is powerful for creativity thanks to its
GPT architecture extending beyond only voice. Its mod-
els encompasses a wide variety of nonverbal communica-
tions like laughing, sighing, crying, and other surprises that
can be called by prompting depending on the model used.
However, this strength also brings the weakness of the out-
puts quickly getting unpredictable if not properly inferred.
The maximum length of audio in Bark is 756 semantic to-
kens, equivalent to approximately 15 seconds. This is due
to the model’s context window size being capped at 1024,
similar to how text language models have limited context
sizes today (e.g. 4096). It’s worth noting that if Bark uti-
lized relative positioning instead of absolute positioning, it
might have been possible to achieve larger context sizes,
such as 2048 or 4096. However, currently, we have not
found techniques for achieving this with absolute position-
ing.
Variable windowing of tokens allows us to control the gran-
ularity of the sound and the intelligibility of the voice. It
aligns with the infinitesimal rhythmical aesthetic we en-
visioned in our music. However, using a set of random
tokens at this stage rapidly disrupts the model’s predictive
capabilities, typically resulting in a degenerate output: a
converged, monotonous pitch with filtering and noise (fig.
2). The choice of variable window size and the randomness
of token sequences defines how much prediction there will
be.
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Figure 2. LPC spectrogram showing the predictive limits of the model.
Using low temperature makes it diverge when not using unconventional
sequences of tokens or when asking for a longer duration than what the
system was designed for. We see here that it starts with the intended
text then gets into a pitched loop. This inherent characteristic can be
transformed into artistic control.

4.2 Random variables for musical control

Each of those three layers has the following standard con-
trols seen in such models. These include temperature, Top-
p, and Top-k controls:

• Temperature setting governs the degree of random-
ness in word selection during text generation. Lower
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temperatures yield more predictable and consistent
outputs, whereas higher temperatures introduce greater
freedom and creativity, albeit at the cost of consis-
tency.

• Top p setting determines the number of probable words
considered by the model. Higher values enable the
model to examine a broader range of possibilities,
including less likely words, resulting in more diverse
generated text.

• Adjusting the Top k setting influences response repet-
itiveness and complexity, notably in vocabulary and
phrasing.

We have implemented a method to control these values
using break-point functions (BPF), which enable us to reg-
ulate amounts of randomness within each sequence of given
tokens. This helps play with the varying intensity of ex-
pression throughout a sentence. We added several ran-
dom and quantizing engines akin to those found in Able-
ton Live’s Beat Repeat feature [5]. Randomly repeating
tokens this way sounds very much like granular synthe-
sis. But employing such transformers with temperatures
as described earlier yields a more dynamic and human-like
output. It offers greater control and expressiveness com-
pared to only directly concatenating grains. The articu-
lation between ”phonemes” aims for naturalness and may
sometimes evoke the additive interpolation taste found in
Diphone (1999) [6, 7].

Randomness plays a valuable role in facilitating serendip-
itous composition experiments, although it falls short of
enabling nuanced musical sequence composition. We re-
quire greater control over token sequence generation.

5. TOKEN ENGINEERING

5.1 Markovian methodology

We subsequently generate more sentences than needed, the-
reby producing a large set of tokens that can then be orga-
nized simply using probabilities. The initial generated text
must indeed have some consistency to retrieve it after the
synthesis. We therefore use Ollama’s models to produce
a set of paraphrased sentences that share a sufficient num-
ber of common words, thereby facilitating our analysis 7 .
This instantly allows us to reach more meaningful textual
material in the output, and we are approaching the initial
idea of having an invented language. We also used a vari-
ous set of Markovian techniques. Our system is a mixture
of probabilities and neural networks which is historically
interesting.

We subsequently employed the multi-scalar Lempel-Ziv-
Welch (LZ) compression, acknowledging that windowing
was playing a critical role. We can decode sequences from
its dictionary and sequence using a collection of probabil-
ity processes [8, 9]. Using LZ with weighted probabil-
ity has been demonstrated to be the most effective method
for regulating the level of meaning and abstraction in our
voices. The multi-scalar nature of the algorithm allows us
to choose specific sequence lengths from the LZ dictionary
and play with our model’s context window, as described
earlier.

7 https://ollama.com - We mostly prompt Mistral models and widely
use Retrieval-Augmented Generation (RAG) technique.
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Figure 3. Example use: generation of semi-words and semi-sentences in
English using an LZ sequence (white) overlapped with accidental repeti-
tions of particular sets of semantic token (yellow).

5.2 Acoustic properties methodology

We now aim to achieve token segmentation enabling us to
extract specific sound or patterns from within the model’s
output. The inherent unpredictability of autoregressive trans-
formers, particularly when using models not trained by
ourselves, necessitates a thorough analysis of the model’s
behavior: We query the model before using it. To min-
imize uncertainty, we employ a deterministic strategy by
using low-temperature settings and a unique seed number.

We initiate our analysis with a comprehensive dataset of
paraphrased sentences, which we then subject to acoustic
feature extraction using the Flucoma Python library and
simple house-made k-means clustering 8 [10]. The multi-
lingual feature of Bark models allows for even greater tim-
bral variety. Specifically, we analyze pitch sequences and
Mel-Frequency Cepstral Coefficients (MFCCs) derived from
the output, enabling us to perform pitch-based or timbre-
based clustering of tokens 9 . This approach proves highly
effective for token sequence segmentation (fig. 4). We then
use the simple but effective weighted LZ method described
earlier to query token and infer then from the model. We
can eventually algorithmically compose with recurrences a
sequence containing a succession of voice descriptors such
as vowels, fricatives, nasals, transients (fig. 5).

We remain focused on the initial idea of using text-to-
speech synthesis for the moment. But, analyzing sounds
from token chains could also be used to direct inference
and converge toward sound targets [11].

5.3 Long generation using fine-tuning

We observed that the maximum length of audio in Bark
was 756 semantic tokens, equivalent to approximately 15
seconds. In contrast, the coarse acoustic model transformer
has no such limit. We then recursively feed the latter with
sequences of semantic tokens and ensure that we can repli-
cate the same characteristics as for previous iterations. We
fine-tune the coarse acoustic model. We had better results
fine-tuning all the three models using a parameter we call
history-prompt. Tuning all three models is also used to tar-
get the personality of a specific actor or singer.

We designed a system that dynamically controls tuning
over iterations by guiding inferences towards a desired tar-
get through controlling probability weights of token, se-

8 https://github.com/jamesb93/python-flucoma
9 https://www.flucoma.org
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Figure 4. Simple k-mean clustering of MFCC segments before using
them as token with our Markovian methods. We have here zoomed into
a larger dataset to enhance visibility. Nevertheless, it is evident that the
quantity of clusters has a significant impact on the intelligibility of the
synthesized voice.

lecting appropriate history-prompts, and manipulating tem-
perature. We use a mixture of text prompting and the acous-
tic properties method described earlier to automatize long
and composed sequences:

1. We iterate our system while having a relatively high
temperature in order to widen predictions.

2. When analyzed descriptors reached a specific tar-
get, we use the resulting history-prompt and the seed
number as fine-tune for subsequent steps.

3. We use seed and history-prompt to generate new ver-
sions with low temperature.

4. We gradually increase the temperature step after step
until reaching a new target given to the analysis.

5. We repeat from point 2.

Each of the resulting branches can be utilized indepen-
dently or together to create polyphony. We also employed
this interplay to generate hip-hop stems trying to control
convergences at specific moments of a song.
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Figure 5. LPC spectrogram showing a generation of hu, tu, shu... Tem-
perature introduced into the coarse acoustic model adds more variety. It
also avoids repetition in the sequence by adding more phonemes related
to those given by the input tokens. Initially articulated as voice, those
segments sound very much like ”electro-acoustic music” articulated tran-
sitions. A pitch curve in blue and centroid in white have been added over
to better visuallize intensity and inflections in this phrase. Notice the end
converging toward only one pitch, in blue.

6. FUTURE AND MUSICAL APPLICATIONS

We used these techniques in the production of remixes for
popular music singers with the authorization of Warner
Music. Those methods are also going to be widely used
for a musical English and theatrical French version of John

Fosse’s play And We’ll Never Be Parted premiered at T2G
National Theatre in September 2025.
The part using GPT-2-like transformers is satisfying for
our needs. Despite this, training a large personal model has
been difficult if not impossible. We will simplify the work-
flow using less external libraries and easily port the whole
system to FairSeq 2 for example. We want to increase va-
riety and style using Low-Rank Adaptation (LoRA) onto
much larger models. We should also be able to merge those
models as easily as we do in visual stable diffusion tools.

7. CONCLUSION

The integration of transformer-based TTS synthesis and
machine learning into production permits a creative ex-
pression between text, sound, literalism and abstraction.
We can generate long unique vocal sequences using to-
ken engineering controlled by sound-descriptors, and fine-
tuning models. This research shows the utility of using
simple concepts to achieve intuitive controls. Utilizing
transformers might initially seem counterproductive to nov-
elty and creativity. However, integrating parametric pro-
cesses enables unexpected textual and sonic surprises, dis-
tinct from those derived solely from acting. We can thus
integrate text and music in our personalized manner.

A Jupyter notebook with all the sequences and audio ex-
amples is available here on GitHub.
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